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ABSTRACT 

Let T be a linear operator on a Hilbert space x. A method of estimation and 
calculation of inf(Re(Z’x, x)//Txl/: x E x, [lx/l = l} as well as some other expressions 
containing two quadratic forms is proposed. This method is based on the Toeplitz- 
Hausdorff theorem on the convexity of the numerical range of any operator on 3c. 

Throughout the paper, X is a Hilbert space with inner product (x, y), 
A, B, S, T denote linear operators in X, and A > 0 implies that A defines a 
strictly positive hermitian form. An operator T is strictly accretive if Re T 
=~(T*+T)>o. 

M. G. Krein [l] and K. Gus&on [2] have pointed out the importance of 
evaluating 

for determining some properties of strictly accretive T. K. Gustafson [2] 
formulated the problem of finding pL1(T), which he called the first antieigen- 
value of T. He also considered higher antieigenvalues 

p”(T)=inf 
i 

Re(Tx, X) 
,lTx ,,,, x,, :x*O,xI~(‘) ,..., x(~-‘) (2) 

where it was assumed that pLk(T) was actually attained by a kth antieigenvec- 
tor dk) for k = 1,. . . ,n - 1. 

In this paper, a method of computation of p,JT) is proposed. The 
structure of a set of antieigenvectors is found. Upper and lower estimates of 
p,(T) are given in the following, including some known results (L. V. 
Kantorovich [3], Ch. Davis [4]). This work constitutes a new approach to the 
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results in this area by K. Gustafson and his collaborators [2, 5, 61. Finally, the 
method considered here allows one to find extrema of expressions of the form 
fl( Ax, x), (Bx, x)), where A = A*, B = B*, and f(.$, q) is some function of 
real 5 and q. 

This method is based on consideration of the numerical range Q(S) of the 
operator S = A + iB. G(S) is the set of values (SX, x) on the unit sphere of X: 

To simplify matters, let’s mention the following well-known properties of 
numerical ranges of operators: 

1. Q(S) is convex. 
2. The closure a(S) of the numerical range of S contains its spectrum 

e(S). 
3. If S is normal, then a(S) is the convex hull Co a(S) of a(S). 
4. Consider Q(S) on the plane of complex numbers 5 + iv. Let I be a 

straight line of support of Q(S), with Q(S) to the right of 1. Moreover, let the 
angle between 1 and the I; axis be denoted by +, and the intersection of 1 and 
the 5 axis be denoted by A (see Figure 1). Then h is the lower bound of 
a(A - Bcot $), where A = ReS = g(S + S*), B = Im S = (1/2i)(S - S*). 

5. If I has a common point [& q] with Q(S), then this point is generated 
by some eigenvectors of operator A - B cot +; namely, if ]]r]] = 1, ( SX, r ) = [ 
+ iv, then (A - Bcot r#~)x = Ax. In the case of dim% <CO it is possible to 

FIG. 1. 
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state more: let [[; n] E 1 and h be a k-fold eigenvalue of A - Bcot $; if [E; ~1 is 
an extreme point of G(S), then {x:(S.r, x)= (E + i~)]]~]]~} is a subspace; if 
[ (; q] is the only common point of 1 and &?(S) or if [E; n] is not an extreme 
point of Q(S), then the number of independent unit vectors which generate 
the point [E; TJ] is equal to k. 

6. If .$ + in is an angle point of G(S), then E + iv E o(S). 
7. The numerical range of a two-dimensional operator 

is an ellipse with foci (pi, a2 and minor axis 1X/2). 

THEOREM 1. Let T be strictly accretive. If jlTj[ < co, then 

p:(T) = 4max(A,t) > 0, (3) 
t 

where A, is the lower bound of the spectrum of the operator St = Re T - tT*T. 

Proof. Let S = ReT + iT*T. According to (l), p;(T)= inf($‘/s: 6 + in 
E Q(S)}, i.e., p:(T) is equal to the inf of values of c such that the parabola 
CYC: n = t”/c has a t 1 east one common point with G?(S). By the conditions of 
the Theorem, G(S) is a bounded convex set in the positive quadrant of the 
[On plane (see property 1 and Figure 2). Let line I satisfy the conditions of 
property 4. It is easy to check that 1 is tangent to the parabola ‘$Sr=4th, and 
separates it from G?(S). So 

p;(T) >, 4tX,. (4) 

We find that [2X,, h,/t] is the point of tangency of 1 with p,. 
In Figure 3 are indicated the possible positions of line 1 in relation to !C?( S). 

The bold line represents a part of L = - 1112 on the northwest boundary of 
Q(S). The points <i = [E,; ni] and l2 = [c2; n2] are such that the lines .$ = ,$i 
and Ocs are support lines of Q(S). It follows from Re T > 0 that 0 < <i < t2. 
We must consider the support lines I tangent to G?(S) at points { = [& n] E L, 
making an angle $I with the axis 05 at X,, with t = cot +. From the convexity 
of Q(S), we see that as t increases from 0 to t2/q2, A, must decrease from ti 
to 0, and 5 must increase from [i to t2. Hence the ratio 2h,/5 decreases 
(strictly) monotonically from 2 to 0. Thus there is only one point [to; n,,] E L 
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FIG. 2. 

FIG. 3. 
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such that the tangent I, passing through this point has intercepted to/2 on 
the E axis. Hence (4) turns into equality if t = cot CpO, where &, is the angle 
between this I, and 06. 

The theorem is proved. n 

Note. If ]JT(] = 00, then also ](S(] = cc and O(S) is an unbounded convex 
set within the parabola qc=i [because Re(Tx, x) < J]TxJ] for any unit x]. As 
may be easily seen, this means that Q(S) contains a vertical ray. So for any 
c > 0, we have ??c f~ Q(S) * 0, and 

k(T) = 0 

(K. Gus&on and B. Zwallen [5]). 

COROLLARY 1. Let T be normul and strictly accretive. Then 

Indeed, if Tis normal, then a(S,)={ReX- tJX12: AEU(T)}, so 

According to (5), if hi, X, E a(T), then pi(T) > 4max,min,,,(tRe h j - 
t ‘1X j)2); this inequality leads to the inequalities of Ch. Davis [4]. These 
inequalities can also be deduced from Theorem 3 below. 

COROLLARY 2 (L. V. Kantorovich [3]). Let T = T* > 0, and m and M be 
respectively the lower and the upper bounds of a(T). Then 

2&z 
PI(T)= m+~. 

Indeed, S, = T - tT2 in this case. So X, = min (m - tm2; M - tM2), and 
by Theorem 1, p;(T) = 4max,min(tm(l- ti), tM(l- tM))= 4mM/(m + 
M)2. 

COROLLARY 3 (K. Gustafson [2]). Zf Re T > 0, then 
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Indeed, 

y2(T) = inf Sup ((ET* - Z)(ET- Z)X, x) 
E ’ 0 lixlj = 1 

‘I+j$j -2sinf((ReT-67.*7.)x,*)] 

inf ((ReT - tT*T)x, X) = 1 -p;(T). 1 
The fact of attainment of the max in (3) can be expressed in terms of 

eigenvectors of the operator S,. This will be done in Theorem 2 below. 
Let dim H < co and 6, = (& 5 = Re(Tx, x), J/x]] = 1, S,x = h,x}. 8, is not 

empty, by the definition of h,, and is convex because Q(S) is convex. 
Generally speaking, 6, is some segment of {a,, b,}, which can degenerate into 
a point a, = b,. The condition dim H < cc is not essential for the determina- 
tion of 8,. In general case dim H < 00, 

6,=(5:5=limRe(TS,,X,),IIX,l/=~,(S,-~,)X,~0). 
n 

THEOREM 2. Let T be strictly accretive and 8, = {a,, b,) be the above- 
determined segment for arbitrary t > 0. Zf t = to is such that a,” < 2ht0 < btO, 
then pi(T) = 2K. Zf t is such that 2X, < a,, then t > to. Zf t is such that 

2h, > b,, then t <to. 

For the proof, we simply retrace the proof of Theorem 1, keeping track of 
the direction of the inequalities between the slopes of the support lines. 

This theorem allows us to develop a computational procedure for the 
determination of p,(T) (and also of pk(T), K > 1). For example, taking (0, t> 
as initial segment, to can be found by the bisection method. Here i is an 
arbitrary positive value such that X;< 0. 

The inequality (4) gives lower bounds on p.,(T). Upper bounds on pi(T) 
can be found by considering two-dimensional compressions of T, i.e. S = Re T 
+ iT*T. According to 7’, for two-dimensional T it is easy to find a point 
[&, : qo] of the ellipse O(S) such that the subtangent is equal to Eo/2. 

Another way to find upper bounds on pi(T) is the following. Let p(Q) 
denote inf{t2/v: [[; 771 E a} for fi any bounded convex set in the positive 
quadrant of the 5077 plane. It is obvious that p(Q2) 6 p(Qi) follows from 
8, < f&,. Hence any simple subsets of G(S) provide upper estimates of pL1(T). 
To avoid huge calculations we consider here only the case of a segment in 
Q(S). 
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THEOREM 3. Let T be strictly accretive, S = ReT + iT*T, [El; ~~1, 

[&,; ~~1 E Q(S), 5i 5 5a; define 

Then pL1(T) 5 fi, where 

(4 ifrll < 71~~ El/2 < g < E2/2, then 

Indeed, as [.& q] runs over the segment from [[i; qi] to [t2; q,], the inf of 
{c : [& q] E CPc) is attained at an endpoint except in case (a), where TJ~ < q2 
and some qC is tangent to the segment at an internal point (see Figure 4). The 
rest follows by elementary computations. 

It is easy to find the structure of a set of antieigenvectors in the case 
dimH<co. 

THEOREM 4. Let dim H = n < 00 and T be strictly accretive on H. Then: 

1. It is possible to choose unit vectors xCk) (k = 1,. . . , n) such that they are 
antieigenvectors corresponding to antieigenvalues j_‘k( T) and the system { xCk)}; 
is an orthonorma I basis in H. 

2. The set of all antieigenvectors which correspond to one k-fold antiei- 
genvalue (pi(T) = . . ’ = pk( T ) < pk + 1( T )) is a k-dimensional subspace if and 
only if the point [(a; qO] in the proof of Theorem 1 is an extreme point of 

Q(S)* 
3. Let T = T* > 0. All antieigenvalues are equal (pc,(T)= . . . = p”(T)) if 

and only if it is possible to find an orthogonal projector P such that 
T=mP+M(Z-P),whereM>m>O. 

The proof of these statements follows from properties 5 and 6, of 
numerical ranges and Theorems 1,2. 

Since the proofs of Theorems 1, 2 use mainly one property of the curve 
f(.$, q) = [“/q = c, its convexity, one can in the same manner consider other 
families of convex curves f(& 17) = c. Using the same way of determining 
lower or upper bounds of a(A - tB), one can find extrema of expressions of 
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the form {f((Ax, x),(Bx, x)):llxlj = l} where A = A*, B = B*. If A or B is 
unbounded, the absence of a common asymptote of the curves f(E, VI) = c is 
additionally required. 

I would like to use this occasion to express my gratitude to Chandler 
Davis, whose contribution was vital to this work. 
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